[This question paper contains 4 printed pages.]

(10)

Your Roll No. 2022

Sr. No. of Question Paper:

1132

٨

Unique Paper Code

32351201

Name of the Paper

BMATH203 - Real Analysis

Name of the Course

B.Sc. (H) Mathematics

Semester

: II

Duration: 3 Hours

Maximum Marks: 75

Instructions for Candidates

- 1. Write your Roll No. on the top immediately on receipt of this question paper.
- 2. All questions are compulsory.
- 3. Attempt any two parts from each question.
- 4. All questions carry equal marks.
- 1. (a) Let S be a non-empty bounded set of \mathbb{R} . Let b < 0 and let $bS = \{bs \mid s \in S\}$. Prove that inf(bS) = b sup S and sup(bS) = b inf S.
 - (b) If y is a positive real number, show that there exists $n_y \in \mathbb{N}$ such that

$$n_y - 1 \le y < n_y$$

(c) Let X be a non-empty set. Let f and g be defined on \mathbb{R} and have bounded

ranges in R. Show that

 $\sup \{ f(x) + g(x) \mid x \in X \} \le \sup \{ f(x) \mid x \in X \} + \sup \{ g(x) \mid x \in X \}.$

P.T.O.

- (d) Define a sequence $\langle e_n \rangle$ by $e_n = \left(1 + \frac{1}{n}\right)^n$, $\forall n \in \mathbb{N}$. Show that $\langle e_n \rangle$ is bounded and increasing and hence converges. Also, show that $\lim \langle e_n \rangle$ Lies between 2 and 3.
- 2. (a) State and prove Density theorem.
 - (b) Let A and B be bounded non-empty subsets of \mathbb{R} and let $A+B=\{a+b \mid a\in A,b\in B\}$. Prove that $\sup(A+B)=\sup A+\sup B$ and $\inf(A+B)=\inf A+\inf B$
 - (c) Let $I_n = \left[0, \frac{1}{n}\right]$, $n \in \mathbb{N}$. Show that $\{I_n, n \in \mathbb{N}\}$ is a nested sequence of intervals and $\bigcap_{n \in \mathbb{N}} I_n = \{0\}$.
 - (d) Examine the convergence of the series $\sum_{n=1}^{\infty} ne^{-n^2}$
- 3. (a) State and prove Monotone Convergence Theorem.
 - (b) Let (x_n) be a sequence of positive real numbers such that $\lim_{n\to\infty} (x_n^{1/n}) = L$ exists. Prove that if L < 1, then (x_n) converges and $\lim_{n\to\infty} (x_n) = 0$.
 - (c) Prove that $\lim_{n\to\infty} (n^{\frac{1}{n}}) = 1$.
 - (d) Use the definition of the limit to show that $\lim_{n\to\infty} (x_n) = 0$, where $x_n = 1/\ln(n+1)$, for $n \in \mathbb{N}$. Also find $K \in \mathbb{N}$ for $\varepsilon = \frac{1}{10}$ such that $|x_n 0| < \varepsilon$, $\forall n \ge K$.
- 4. (a) Let $X = (x_n)$ and $Y = (y_n)$ be sequences of real numbers that converge to x and y respectively and if $y \neq 0$. Then the quotient sequence X/Y converges to x/y.
 - (b) State and prove Squeeze Theorem. Also find $\lim_{n\to\infty} \left(\frac{\sin n}{n}\right)$

- (c) State Cauchy Convergence Criterion for Sequences. Let $X = (x_n)$ be defined by $x_1 = 1$, $x_2 = 2$ and $x_n = \frac{1}{2}(x_{n-1} + x_{n-2})$ for n > 2. Prove that the sequence X is convergent.
- (d) Discuss the convergence of the sequence (x_n) , where $x_n = \frac{1}{1^2} + \frac{1}{2^2} + \cdots + \frac{1}{n^2}$, for each $n \in \mathbb{N}$.
- 5. (a) Suppose the k th partial sum of $\sum_{n=1}^{\infty} x_n$ is $s_k = \frac{k}{k+1}$. Find the corresponding series and general term x_n . Prove that the series converges and then find the limit.
 - (b) Prove that the harmonic series $\sum \frac{1}{n}$ diverges (despite the fact that $\lim \frac{1}{n} = 0$).
 - (c) Test for convergence, the following series:

(i)
$$\sum_{n=1}^{\infty} \frac{\ln n}{n^2}$$
 (ii) $\frac{1}{5} + \frac{\sqrt{2}}{7} + \frac{\sqrt{3}}{9} + \frac{\sqrt{4}}{11} + \cdots$

- (d) Show that the series $\frac{1}{2^p} + \frac{1}{3^p} \frac{1}{4^p} + \cdots, p > 0$ converges absolutely for p > 1 and conditionally for 0 .
- 6. (a) Prove that if $\sum_{n\geq 1} a_n$ is a series of positive terms and that its partial sums are bounded, then $\sum_{n\geq 1} a_n$ converges. Show that this is not necessarily true if $\sum_{n\geq 1} a_n$ is not a series of positive terms.
 - (b) State and prove the limit comparison test.
 - (c) Test for convergence, the following series:

(i)
$$1 + \frac{1}{2^2} + \frac{1}{3^3} + \dots + \frac{1}{n^n} + \dots$$

(ii) $\sum_{n=1}^{\infty} 3^{-n-(-1)^n}$

(d) Define absolute and conditional convergence of an alternating series. Show that the series $\sum \frac{(-1)^{n+1}}{\sqrt{n}}$ is conditionally convergent but not absolutely.

downtrated from the United Roads Confinence of the Confinence of t

(100)